KEC10B (.110" x .110")

◆ Product Features

High Q, High Power, Low ESR/ESL, Low Noise, High Self-Resonance, Ultra- Stable Performance.

♦ Product Application

Typical Functional Applications: Bypass, Coupling, Tuning, Feedback, Impedance Matching and D.C. Blocking.

Typical Circuit Applications: UHF/Microwave RF Power Amplifiers, Mixers, Oscillators, Low Noise Amplifiers,

Filter Networks, Timing Circuits and Delay Lines

♦ KEC10B Capacitance Table

Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC
0.1	0R1			3.6	3R6			43	430			510	511		
0.2	0R2	A,		3.9	3R9			47	470		500V	560	561		100V
0.3	0R3	В		4.3	4R3			51	510		Code	620	621	F,	Code 101
0.4	0R4			4.7	4R7			56	560		501	680	681	G,	or
0.5	0R5			5.1	5R1	A,		62	620		or	750	751	J	200V
0.6	0R6			5.6	5R6	В,		68	680		1500V	820	821		Code
0.7	0R7			6.2	6R2	C, D		75	750		Code	910	911		201
0.8	0R8			6.8	6R8	ע		82	820		152	1000	102		
0.9	0R9		500V	7.5	7R5		500V	91	910						
1.0	1R0		Code	8.2	8R2		Code	100	101						
1.1	1R1		501	9.1	9R1		501	110	111	F,	300V				
1.2	1R2		or 1500V	10	100		or 1500V	120	121	G,	Code				
1.3	1R3	A,	Code	11	110		Code	130	131	J	301				
1.4	1R4	В,	152	12	120		152	150	151		or				
1.5	1R5	C,		13	130			160	161		1000V				
1.6	1R6	D		15	150			180	181		Code 102				
1.7	1 R 7			16	160			200	201		102				
1.8	1R8			18	180	F,		220	221						
1.9	1R9			20	200	G,		240	241		200V				
2.0	2R0			22	220	J		270	271		Code				
2.1	2R1			24	240			300	301		201				
2.2	2R2			27	270			330	331		or				
2.4	2R4			30	300			360	361		600V Code				
2.7	2R7			33	330			390	391		601				
3.0	3R0			36	360			430	431		Masterra				
3.3	3R3			39	390			470	471						

◆Part Numbering

Code A В \mathbf{C} D F G J Tolerance $\pm 0.05 pF$ $\pm 0.1 pF$ $\pm 0.25 pF$ $\pm 0.5 pF$ $\pm 1\%$ ±2% ±5%

Note: Tolerance of $\pm 0.02 pF$ is a possibility. Please contact Kete

♦ KEC10B Capacitor Dimensions

unit:inch(millimeter)

			Cay	pacitor D	imension	S	L	Plated		
Series	Term. Code	Type / Outlines	Length (Lc)	Width (Wc)	Thick.	Overlap (B)	Length (L _L)	Width (W _L)	Thickness (T _L)	Material
wo.	w	TI	.110+.020 to010	.110 ±	.10	.024				100% Sn over Nickel Plating
10B	L	Chip	(2.79+0.51 to -0.25)	.010 (2.79 ±0.25)	(2.54) max	(0.60) max	=	-	-	90 Sn10Pb over Nickel Plating
10B	MS	π	.135 ±	.110 ±	.10		.250	.093 ±	.008± .001 (0.2± 0.025)	Silver- plated Copper
		Microstrip	.015 (3.43 ±0.38)	.010 (2.79 ±0.25)	(2.54) max	_	(6.35) min	(2.36 ±0.13)	.004± .001 (0.1± 0.025)	100% Silver

			Caj	imension	ıs	I	Divi			
Series	Term.	Type / Outlines	Length (Lc)	Width (Wc)	Thick.	Overlap (B)	Length (L _L)	Width (WL)	Thickness (T _L)	Plated Material
10B	P	Chip (Non-Magnetic)	.110+.020 to010 (2.79+0.51 to-0.25)	.110 ± .010 (2.79 ±0.25)	.10 (2.54) max	.024 (0.60) max	_	_	_	100% Sn over Copper Plating RoHS Compliant
10B	MN	T.	.135 ±	.110 ±	.10	_	.250	.093 ±	.008± .001 (0.2± 0.025)	Silver- plated Copper
	Microstrip (Non-Magnetic)	.015 (3.43 ±0.38)	.010 (2.79 ±0.25)	(2.54) max		(6.35) min	(2.36 ±0.13)	.004± .001 (0.1± 0.025)	100% Silver	

Note: non-mag is no magnetism.

♦ Performance

Item	Specifications				
Quality Factor (Q)	greater than 10,000 at 1 MHz				
	0.1 pF to 470 pF:				
	10 ⁶ Megohms min. @ +25 °C at rated WVDC.				
Insulation Pagistance (ID)	10 ⁵ Megohms min. @ +125 °C at rated WVDC.				
Insulation Resistance (IR)	510 pF to 1000 pF:				
	10 ⁵ Megohms min. @ +25 °C at rated WVDC.				
	10⁴ Megohms min. @ +125°C at rated WVDC.				
Rated Voltage	See Rated Voltage Table				
	250% of Rated Voltage for 5 seconds, Rated Voltage ≤ 500VDC				
Dielectric Withstanding Voltage (DWV)	150% of Rated Voltage for 5 seconds, 500VDC < Rated Voltage ≤ 1250VDC				
	120% of Rated Voltage for 5 seconds, Rated Voltage > 1250VDC				
Operating Temperature Range	−55°C to +200°C.				
Temperature Coefficient (TC)	+90 ± 20 ppm/℃ (−55℃ to +125℃);				
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.				
Piezoelectric Effects	None				
Termination Type	See Termination Type Table				

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

♦ Environmental Tests

Item	Specifications	Method
Thermal Shock Moisture Resistance	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change: no more than 0.5% or 0.5pF. whichever is greater.	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 minutes. The time of removing shall not be more than 3 minutes. Perform the five cycles. MIL-STD-202, Method 106.
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF. whichever is greater.	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85 °C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 200°C. 200% of Rated Voltage for Capacitors, Rated Voltage ≤ 500VDC 120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤ 1250VDC 100% of Rated Voltage for Capacitors, Rated Voltage > 1250VDC

♦ KEC10B Performance Curve

ESR vs Capacitance

Q vs Capacitance

ESR vs Capacitance

Q vs Capacitance

KEC10B Horizontal First Series Resonance(FSRs)

Definitions and Measurement Conditions

For a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace, with 50-Ohm source and termination resistances, the First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined (gap in plot above). FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined above; and mounting pad dimensions.

The measurement conditions are: substrate -- Rogers RO4350; substrate dielectric constant =3.66; horizontal mount substrate thickness (mils) = 50; gap in microstrip trace (mils) = 72; horizontal mount microstrip trace width (mils) = 110. Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by Kete. The models are derived from measurements on a large number of parts disposed on several different substrates.

♦ KEC10B Performance Curve

KEC10B Horizontal First Parallel Resonance(FPRs)

Definitions and Measurement conditions:

For a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace, with 50-Ohm source and termination resistances, the First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in [S21]. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate.

The measurement conditions are: substrate -- Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 50; gap in microstrip trace (mils) = 72; horizontal mount microstrip trace width (mils) = 110. Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by KEC. The models are derived from measurements on a large number of parts disposed on several different substrates.

Current Rating vs Capacitance

The current depends on voltage limited: $I = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_C} = \sqrt{2} \pi I C V_{rated}$

The current depends on power dissipation limited: $I = \sqrt{\frac{P_{\text{obsorpation}}}{ESR}}$

Current Rating vs Capacitance

Note: If the thermal resistance of mounting surface is 20°C/W.

then a power dissipation of 3 W will result in the current limited we can calculate the current limited $I = \sqrt{\frac{P_{\text{daugnstron}}}{ESR}}.$

◆ Tape & Reel Specifications

Orientation	EIA	A0	В0	K0	w	P0	P1	Т	F	Qty/reel	Tape Material
Horizontal	1111	2.85	3.90	1.95	8.00	4.00	4.00	0.22	3.50	2000	Plastic
Vertical	1111	2.00	3.50	2.70	12.00	4.00	4.00	0.40	5.50	1500	Plastic
Vertical	1111	2.96	3.60	2.40	8.00	4.00	4.00	0.22	3.50	1500	Plastic

◆Design Kits

These capacitors are 100% RoHS. Kits are available in Magnetic and Non-Magnetic that contain 10(ten) pieces per value.

Design Kit	Description (pF)	Values (pF)	No. of values	Tolerance
		1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7		± 0.10pF
DKKEC10B01	1.0 - 10	3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2	16	± 0.25pF
		10		±5%
DKKEC10B02	10 - 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100	16	±5%
DKKEC10B03	100 - 1000	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000	16	±5%
	10.10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7,		± 0.10pI
DKKEC10B05	1.0 - 10 Non-magnetic	3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2	16	± 0.25pl
	Tion magneta	10		±5%
DKKEC10B06	10 - 100 Non-magnetic	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100	16	±5%
DKKEC10B07	100 - 1000 Non-magnetic	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000	16	±5%

